Functional Principal Components Analysis (FPCA) is one of the most successful and widely used analytic tools for functional data exploration and dimension reduction. Standard implementations of FPCA estimate the principal components from the data but ignore their sampling variability in subsequent inferences. To address this problem, we propose the Fast Bayesian Functional Principal Components Analysis (Fast BayesFPCA), that treats principal components as parameters on the Stiefel manifold. To ensure efficiency, stability, and scalability we introduce three innovations: (1) project all eigenfunctions onto an orthonormal spline basis, reducing modeling considerations to a smaller-dimensional Stiefel manifold; (2) induce a uniform prior on the Stiefel manifold of the principal component spline coefficients via the polar representation of a matrix with entries following independent standard Normal priors; and (3) constrain sampling leveraging the FPCA structure to improve stability. We demonstrate the improved credible interval coverage and computational efficiency of Fast BayesFPCA in comparison to existing software solutions. We then apply Fast BayesFPCA to actigraphy data from NHANES 2011-2014, a modelling task which could not be accomplished with existing MCMC-based Bayesian approaches.